伯努利数及其应用

伯努利数定义:

$$\dfrac{t}{e^t - 1} = \sum_{n = 0}^{\infty} \dfrac{B_n}{n!} t^n$$

递推式:
$$\begin{align}
& \sum_{k = 0}^{n}C_{n + 1}^kB_k = 0 \\
\Longrightarrow & B_n = -\dfrac1{n+1}(C_{n+1}^0B_0 + C_{n+1}^1B_1+…+C_{n+1}^{n-1}B_{n-1})
\end{align}$$




ACdreamer有两篇博客写的很不错

伯努利数与自然数幂和

自然数幂和取模问题进一步探究

应用:

求自然数的幂等和

题目链接v1

$$
\sum_{i=1}^ni^k = \dfrac1{k+1}\sum_{i=1}^{k+1}C_{k+1}^iB_{k+1-i}(n+1)^i
$$

在k不是很大的时候,上式中除了$B_i$之外剩下的都可以轻松预处理

对于$B_i$,可以用之前的递推式子$O(k^2)$的预处理出来

然后就可以线性时间内求得自然数的幂等和

题目链接v2

当k比较大的时候,我们重新审视一下定义:

$$\begin{align}
\sum_{n = 0}^{\infty} \dfrac{B_n}{n!} t^n =& \dfrac{t}{e^t - 1} (用泰勒公式展开e^t) \\
=& \dfrac{t}{\sum_{i=1}^{\infty}\dfrac{t^i}{i!}} \\
=& \dfrac{1}{\sum_{i=0}^{\infty}\dfrac{t^i}{(i+1)!}}
\end{align}$$

观察最后的形式,其实就是一个多项式的逆元。

那么我们把这个母函数放在模$t^{n+1}$意义下求出来,每一项就都出来了。

代码

/*
* Filename:    51nod-1258.cpp
* Created:     Tuesday, October 17, 2017 03:32:24 PM
* Author:      crazyX
* More:
*
*/
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define SZ(x) ((int) (x).size())
#define all(x) (x).begin(), (x).end()
#define sqr(x) ((x) * (x))
#define clr(a,b) (memset(a,b,sizeof(a)))
#define y0 y3487465
#define y1 y8687969
#define fastio std::ios::sync_with_stdio(false)

using namespace std;
typedef long long ll;
typedef double DB;

const int maxn = 50000 + 7;
const int maxLen = 17, maxm = 1 << maxLen | 1;
const ll maxv = 1e18 + 6; // 1e14, 1e15
const DB pi = acos(-1.0); // double is enough
ll mod = 1e9 + 7, nlim, sp, msk;

#define _ %mod
#define __ %=mod

inline ll read(){
    char c=getchar(); ll x=0,f=1;
    while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
    return x*f;
}

int qpow(ll x, ll p) {
    ll ret = 1;
    while (p) {
        if (p & 1) (ret *= x) __;
        (x *= x) __;
        p >>= 1;
    }
    return ret _;
}

namespace FFT{
    struct cp {
        DB r, i;
        cp() {}
        cp(DB r, DB i) : r(r), i(i) {}
        cp operator + (cp const &t) const { return cp(r + t.r, i + t.i); }
        cp operator - (cp const &t) const { return cp(r - t.r, i - t.i); }
        cp operator * (cp const &t) const { return cp(r * t.r - i * t.i, r * t.i + i * t.r); }
        cp conj() const { return cp(r, -i); }
    } w[maxm], wInv[maxm];

    void init() {
        for(int i = 0, ilim = 1 << maxLen; i < ilim; ++i) {
            int j = i, k = ilim >> 1; // 2 pi / ilim
            for( ; !(j & 1) && !(k & 1); j >>= 1, k >>= 1);
            w[i] = cp(cos(pi / k * j), sin(pi / k * j));
            wInv[i] = w[i].conj();
        }
        nlim = std::min(maxv / (mod - 1) / (mod - 1), maxn - 1LL);
        for(sp = 1; 1 << (sp << 1) < mod; ++sp);
        msk = (1 << sp) - 1;
    }

    void FFT(int n, cp a[], int flag) {
        static int bitLen = 0, bitRev[maxm] = {};
        if(n != (1 << bitLen)) {
            for(bitLen = 0; 1 << bitLen < n; ++bitLen);
            for(int i = 1; i < n; ++i)
                bitRev[i] = (bitRev[i >> 1] >> 1) | ((i & 1) << (bitLen - 1));
        }
        for(int i = 0; i < n; ++i)
            if(i < bitRev[i])
                std::swap(a[i], a[bitRev[i]]);
        for(int i = 1, d = 1; d < n; ++i, d <<= 1)
            for(int j = 0; j < n; j += d << 1)
                for(int k = 0; k < d; ++k) {
                    cp &AL = a[j + k], &AH = a[j + k + d];
                    cp TP = w[k << (maxLen - i)] * AH;
                    AH = AL - TP, AL = AL + TP;
                }
        if(flag != -1)
            return;
        std::reverse(a + 1, a + n);
        for(int i = 0; i < n; ++i) {
            a[i].r /= n;
            a[i].i /= n;
        }
    }

    void polyMul(int a[], int aLen, int b[], int bLen, int c[]) { // c not in {a, b}
        static cp A[maxm], B[maxm], C[maxm], D[maxm];
        int len, cLen = aLen + bLen - 1; // optional: parameter
        for(len = 1; len < aLen + bLen - 1; len <<= 1);
        if(std::min(aLen, bLen) <= nlim) {
            for(int i = 0; i < len; ++i)
                A[i] = cp(i < aLen ? a[i] : 0, i < bLen ? b[i] : 0);
            FFT(len, A, 1);
            cp tr(0, -0.25);
            for(int i = 0, j; i < len; ++i)
                j = (len - i) & (len - 1), B[i] = (A[i] * A[i] - (A[j] * A[j]).conj()) * tr;
            FFT(len, B, -1);
            for(int i = 0; i < cLen; ++i) c[i] = (ll)(B[i].r + 0.5) % mod;
            return;
        } // if min(aLen, bLen) * mod <= maxv
        for(int i = 0; i < len; ++i) {
            A[i] = i < aLen ? cp(a[i] & msk, a[i] >> sp) : cp(0, 0);
            B[i] = i < bLen ? cp(b[i] & msk, b[i] >> sp) : cp(0, 0);
        }
        FFT(len, A, 1), FFT(len, B, 1);
        cp trL(0.5, 0), trH(0, -0.5), tr(0, 1);
        for(int i = 0, j; i < len; ++i) {
            j = (len - i) & (len - 1);
            cp AL = (A[i] + A[j].conj()) * trL;
            cp AH = (A[i] - A[j].conj()) * trH;
            cp BL = (B[i] + B[j].conj()) * trL;
            cp BH = (B[i] - B[j].conj()) * trH;
            C[i] = AL * (BL + BH * tr);
            D[i] = AH * (BL + BH * tr);
        }
        FFT(len, C, -1), FFT(len, D, -1);
        for(int i = 0; i < cLen; ++i) {
            int v11 = (ll)(C[i].r + 0.5) % mod, v12 = (ll)(C[i].i + 0.5) % mod;
            int v21 = (ll)(D[i].r + 0.5) % mod, v22 = (ll)(D[i].i + 0.5) % mod;
            c[i] = (((((ll)v22 << sp) + v12 + v21) << sp) + v11) % mod;
        }
    }

    int c[maxm], tmp[maxm];
    // y should clear to 0
    void polyInv(int x[], int y[], int deg) {
        if (deg == 1) {
            y[0] = qpow(x[0], mod - 2);
            return;
        }
        polyInv(x, y, (deg + 1) >> 1);

        copy(x, x + deg, tmp);
        int p = ((deg + 1) >> 1) + deg - 1;
        polyMul(y, (deg + 1) >> 1, tmp, deg, c);

        for (int i = 0; i < p; i += 1) c[i] = (- c[i] + mod) _;
        (c[0] += 2) __;

        polyMul(y, (deg + 1) >> 1, c, deg, tmp);
        copy(tmp, tmp + deg, y);
    }

};

int A[maxn], B[maxn];
ll inv[maxn], fac[maxn], facInv[maxn], mi[maxn];

inline void init() {
    FFT::init();
    A[0] = fac[0] = fac[1] = inv[0] = inv[1] = facInv[0] = facInv[1] = 1;
    for (int i = 2; i < maxn; i += 1) {
        fac[i] = fac[i - 1] * i _;
        facInv[i] = qpow(fac[i], mod - 2);
        A[i - 1] = qpow(fac[i], mod - 2);
        inv[i] = qpow(i, mod - 2);
    }
    FFT::polyInv(A, B, maxn - 1);
    for (int i = 0; i < maxn - 1; i += 1) B[i] = fac[i] * B[i] _;
}

inline ll C(int n, int m) {return fac[n] * facInv[m] _ * facInv[n - m] _;}

inline int cal(ll n, int k) {
    (++n) __;
    ll ret = 0;
    mi[0] = 1;
    for (int i = 1; i <= k + 1; i += 1) mi[i] = mi[i - 1] * n _;
    for (int i = 1; i <= k + 1; i += 1) {
        if (B[k + 1 - i]) (ret += C(k + 1, i) * B[k + 1 - i] _ * mi[i] _) __;
    }
    return ret * inv[k + 1] _;
}

int main()
{
#ifdef AC
    freopen("data.in", "r", stdin);
    freopen("data.out", "w", stdout);
#endif
    int T, k; ll n;
    init();
    T = read();
    while (T--) {
        n = read(); k = read();
        printf("%d\n", cal(n, k));
    }
    return 0;
}

文章作者: crazyX
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 crazyX !
评论
 上一篇
多项式求逆总结 - 无向连通图计数 多项式求逆总结 - 无向连通图计数
求$N$个点组成的有标号简单无向连通图个数,答案模 10^9+7 1998585857 由这个问题引入,顺便总结一下多项式求逆的内容。 首先可以设 $f(n)$ 表示有 $n$ 个点的有标号简单连通无向图的个数, $g(n)$ 表示有
2017-10-18
下一篇 
hdu 5730 Shell Necklace - [分治FFT|多项式求逆] hdu 5730 Shell Necklace - [分治FFT|多项式求逆]
给出长度分别为 $ 1 \sim n $ 的珠子,长度为i的珠子有$a[i]$种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案。 链接Shell Necklace 题解( 多么好的一个模板题!业界良心! 令dp[i]表示用
2017-10-17
  目录